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1 Introduction and Preliminaries

A metric space X is a CAT(0) space if it is geodesically connected, and if
every geodesic triangle in X is at least as ”thin” as its comparison triangle in the
Euclidean plane, introduced by Gromov [1]. It is well-known that any complete,
simply connected Riemannian manifold having non positive sectional curvature is
a CAT(0) space. Other examples include the classical hyperbolic spaces, Euclidean
buildings (see [2]), the complex Hilbert ball with a hyperbolic metric (see [3]), and
many others. The ∆-convergence in a general metric space setting is introduced
by Lim [4] in 1976. In 2008, Dhompongsa and Panyanak [5] proved ∆-convergence
theorems in CAT(0) spaces by using the concept of ∆-convergence introduced by
Lim [4], and gived the CAT(0) space analogs of results on weak convergence of
the Picard, Mann and Ishikawa iterates proved in uniformly convex Banach spaces

Copyright c© 2020 by the Mathematical Association of Thailand.
All rights reserved.



82 Thai J. Math. (Special Issue, 2020)/ C. Suanoom

by Opial [6], Ishikawa [7] and Tan and Xu [8]. In 2017, Khamsi and Shukri [9]
extended the Gromov geometric definition of CAT(0) spaces to the case where the
comparison triangles are not in the Euclidean plane but belong to a general Banach
space. In particular, many other authors studied the case where the Banach space
is lp, for p > 2.

Next, Bakhtin [10] and Czerwik [11] developed the notion of b-metric spaces
and established some fixed point theorems in b-metric spaces in 1989. Subse-
quently, several results appeared in this direction ([14]-[21]) as follows:

Definition 1.1 ([11]). A b-metric on a set X is a mapping d : X ×X → [0,+∞)
satisfying the following conditions: for any x, y, z ∈ X,

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) there exists s ≥ 1 such that d(x, y) ≤ s(d(x, z) + d(z, y)).

Then (X, d) is known as a b-metric space with coefficient s.

Note that every metric space is a b-metric space with s = 1. Some examples
of b-metric space are given below: Let R be a vecter space. Define a mapping
d : R× R→ [0,∞) by

d(x, y) = |x− y|p

for all x, y ∈ X, p = 2, 3, ... . Then (R, | · |) is a b-metric space with coefficient
s = 2p−1.

After that, Al-Saphory, Al-Janabi and Al-Delfi [22] introduced a quasi-Banach
space as follows:

Definition 1.2. Let X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following:

(qb1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0,

(qb2) ‖λx‖ =| λ | ‖x‖ for all λ ∈ R and all x ∈ X,
(qb3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all

x, y ∈ X.
The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X.

A quasi-normed ‖ · ‖ is called a p-norm (0 < p ≤ 1) if
‖x + y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ X. In this case, a quasi-normed spaces
(quasi-Banach space) is called a p-quasi-normed spaces (p-quasi-Banach space).
Note that every a Banach space is a quasi-Banach space with K = 1 and every
a quasi-Banach space is a b-metric space with d(x, y) := ‖x − y‖ and coefficient
s = K.

In this work, we extend and improve CAT(0) spaces to b-CAT(0) spaces by
using the concept of b-metric spaces. Second, we establish new spaces, that is b-
CAT(0) spaces and prove the results of a fixed point for non-expansive mappings on
b-CAT(0) spaces. Moreover, we obtain ∆-convergence theorems for non-expansive
mappings on b-CAT(0) spaces and present some properties.
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2 Main Results

Let (X, d) be a b-metric space with s ≥ 1. A b-geodesic joining x ∈ X to
y ∈ X is a continuous mapping γ : [0, d(x, y)]→ X such that

• γ(0) = x,

• γ(d(x, y)) = y,

• d(γ(t1), γ(t2)) = |t1 − t2| for any t1, t2 ∈ [0, d(x, y)].

We will say that (X, d) is a (uniquely) b-geodesic metric space if any two points
are connected by a (unique) b-geodesic. In this case, we denote such geodesic
by [x, y]. Note that in general such b-geodesic is not uniquely determined by its
endpoints. For a point z ∈ [x, y], we will use the notation z = (1− t)x⊕ ty, where

t = d(x,z)
d(x,y) , 1 − t = d(y,z)

d(x,y) assuming x 6= y. Let (X, d) be a b-geodesic metric

space with s ≥ 1. A b-geodesic triangle consists of three point p, q, r ∈ X and
three geodesics [p, q], [q, r], [r, p]. Denote ∆([p, q], [q, r], [r, p]). For such a triangle,
there is a comparison triangle ∆(p, q, r)→ E2 : d(p, q) = d(p, q), d(q, r) = d(q, r),
d(r, p) = d(r, p).

Definition 2.1. A b-geodesic space is said to be a b-CAT(0) space if all b-geodesic
triangles of appropriate size satisfy the following comparison axiom.
b-CAT(0): Let ∆ be a b-geodesic triangle in b-metric space X and let ∆̄ ∈ E2 be
a comparison triangle for ∆. Then ∆ is said to satisfy the b-CAT(0) inequality if
for all x, y ∈ ∆ and all comparison points x, y ∈ ∆ such that

d(x, y) ≤ ||x− y||.

We call b− CATp(0) metric spaces, for p-quasi-normed spaces (E2, ‖ · ‖).

Example 2.2. (I). Let X := lp(R) with 0 < p < 1 where lp(R) := {{xn} ⊂ R :∑∞
i=1 |xi|p <∞}. Define d : X ×X → [0,∞) as:

||x|| = (

∞∑
i=1

|xi|p)
1
p

where x = {xn}. Then d is a b-metric space with coefficient s = 2p−1, see([23] -
[25]). And, defined a continuous mapping γ : [0, d(x, y)]→ X by γ(z) = (1−t)x+ty
for all t ∈ [0, d(x, y)]. and all z ∈ X. Then (X, d) is a b-CAT(0) space.
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(II). Let X := Lp[0, 1] be the space of all real functions x(t), t ∈ [0, 1] such

that
∫ 1

0
|x(t)|pdt <∞ with 0 < p < 1. Define d : X ×X → [0,∞) as:

||x|| = (

∫ 1

0

|x(t)|pdt)
1
p

with 0 < p < 1 where x = x(t). Then d is a b-metric space with coefficient
s = 2p−1, see([23] -[25]). And, defined a continuous mapping γ : [0, d(x, y)] → X
by γ(z) = (1 − t)x + ty for all t ∈ [0, d(x, y)]. and all z ∈ X. Then (X, d) is a
b-CAT(0) space.

Now, we establish lemma about (b− CN) inequality and (b− CNp) inequality.

Lemma 2.3. Let (X, d) be a b-CAT(0) metric space. Then for any x, y1, y2 in X,
we have

d(x,
y1 ⊕ y2

2
) ≤ Kd(x, y1) +Kd(x, y2)− 1

2
d(y1, y2)

which we will call the (b-CN) inequality.

Proof. Let x, y1, y2 be in X and ∆ be the associated geodesic triangle in X. Since
X is a b-CAT(0) space, there exists a comparison geodesic triangle ∆. The associ-
ated comparison points in E2 will be denoted by x, y1, y2. The comparison axiom
implies:

d(x,
y1 ⊕ y2

2
) ≤ ||x− y1 + y2

2
||

By the inequality of b-CAT(0), we get ||a+ b||+ ||a− b|| ≤ 2K(||a||+ ||b||) for any
a, b ∈ E2. Applying this inequality for a = x−y1

2 and b = x−y2

2 , yields:

||x− y1
2

+
x− y2

2
||+ ||x− y1

2
− x− y2

2
|| ≤ 2K(||x− y1

2
||+ ||x− y2

2
||).

So,

||x− y1
2

+
x− y2

2
|| ≤ 2K(||x− y1

2
||+ ||x− y2

2
||)− ||x− y1

2
− x− y2

2
||,

or,

||x− y1 + y2
2
|| ≤ K(||x− y1||+ ||x− y2||)−

1

2
||y1 − y2||.

Since ||yi − yj || = d(yi.yj), for i, j ∈ {1, 2}, we get

d(x,
y1 ⊕ y2

2
) ≤ Kd(x, y1) +Kd(x, y2)− 1

2
d(y1, y2).

Note that the (b− CN) inequality coincides with the classical (CN) inequality if
K = 1. One of the implications of the (CN) inequality is the uniform convexity
of the distance of a CAT(0) space.

Next we discuss the (b− CNp) inequality of the b-CATp(0) metric spaces.
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Lemma 2.4. Let (X, d) be a b-CATp(0) metric space. Then for any x, y1, y2 in
X, we have

dp(x,
y1 ⊕ y2

2
) ≤ 1

2p−1
dp(x, y1) +

1

2p−1
dp(x, y2)− 1

2p
dp(y1, y2),

where 0 < p ≤ 1, which we will call the (b− CNp) inequality.

Proof. Let x, y1, y2 be in X and ∆ be the associated geodesic triangle in X. Since X
is a CATp(0) space, there exists a comparison geodesic triangle ∆. The associated
comparison points in R will be denoted by x, y1, y2. The comparison axiom implies:

d(x,
y1 ⊕ y2

2
) ≤ ||x− y1 + y2

2
||,

which implies

d(x,
y1 ⊕ y2

2
)p ≤ ||x− y1 + y2

2
||p.

By the inequality of b-CATp(0), we get ||a+ b||p + ||a− b||p ≤ 2(||a||p + ||b||p) for

any a, b ∈ E2. App blying this inequality for a = x−y1

2 and b = x−y2

2 , yields:

||x− y1
2

+
x− y2

2
||p + ||x− y1

2
− x− y2

2
||p ≤ 2(||x− y1

2
||p + ||x− y2

2
||p).

So,

||x− y1
2

+
x− y2

2
||p ≤ 2(||x− y1

2
||p + ||x− y2

2
|||p)− ||x− y1

2
− x− y2

2
||p,

or,

||x− y1 + y2
2
||p ≤ 1

2p−1
(||x− y1||p + ||x− y2||p)− 1

2p
||y1 − y2||p.

Since ||yi − yj || = d(yi.yj), for i, j ∈ {1, 2}, we get

dp(x,
y1 ⊕ y2

2
) ≤ 1

2p−1
dp(x, y1) +

1

2p−1
dp(x, y2)− 1

2p
dp(y1, y2),

where 0 < p ≤ 1.

We now give the definition and collect some basic properties of the ∆-convergence:

Definition 2.5. Let {xn} be a bounded sequence in a b-metric space X.
For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},
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and the asymptotic center A ({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}
A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the unique asymp-
totic center of {un} for every subsequence {un} of {xn}. In this case we write
∆− limn xn = x and call x the ∆-limit of {xn}.

Remark 2.6. Let {xn} be a bounded sequence in a b-metric space X.
(i) Every bounded sequence in X has a ∆-convergent subsequence
(ii) If C is a closed convex subset of X and if {xn} is a bounded sequence in

C, then the asymptotic center of {xn} is in C .
(iii) If C is a closed convex subset of X and if f : C → X i a nonexpansive

mapping, then the conditions,{xn} ∆-convergestox and d(xn, f(xn)) → 0, imply
x ∈ Cand f(x) = x

(iv) If {xn} is a bounded sequence in X with A({xn}) = {x} and {un} is a
subsequence of {x} with A({un}) = {u} and the sequence {d(xn, u)} converges,
then x = u.

The following lemma is crucial in the study my theorem and it can prove follow
as of the proof of Dhompongsa and Panyanak [5]

Lemma 2.7. Let C be a closed convex subset of a b-CAT(0) space X, followand
let T : C → X be a nonexpansive mapping. Suppose {xn} is a bounded sequence
in C such that limn d(xn, Txn) = 0 and d(xn, v) converges for all v → F (T ), then⋃
A({un}) ⊂ F (T ). Here

⋃
A({un}) where the union is taken over all subsequences

{un} of {xn}. Moreover,
⋃
A({un}) consists of exactly one point.

We recall the definition a nonexpansive mapping:

Definition 2.8. From now on, X is a b-metric space, C is a nonempty convex
subset of X and T : C → C is a mapping. A mappimg T is called nonexpansive if
for each x, y ∈ C,

d(Tx, Ty) ≤ d(x, y).

A point x ∈ C is called a fixed point of T if x = Tx. We shall denote with
F (T ) the set of fixed points of T.

Now, we proof main results:

Theorem 2.9. Let C be a bounded closed convex subset of b-CAT(0) spaces X, and
F (T ) 6= ∅. Suppose that T : C → C a nonexpansive mapping. Then for any initial
point x0 in C, the iterate sequence {xn} defined by xn+1 = Txn, n = 0, 1, 2, ...,
and limn→∞ d(xn, Txn) = 0, then the Picard iterate sequence ∆-converges to a
fixed point of T.

Proof. Since T is nonexpansive, {d(xn, p)} is decreasing for each p ∈ F (T ), so
it is convergent. By Lemma 2.7,

⋃
A({un}) consists of exactly one point and is

contained in F (T ). This shows that {xn} ∆-converges to an element of F (T ).
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[2] K.S. Brown, Buildings, Springer-Verlag, New York, 1989.

[3] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonex-
pansive Mappings, Series of Monographs and Textbooks in Pure and Applied
Mathematics, Vol. 83, Dekker, New York, 1984.

[4] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc.
60 (1976) 179–182.

[5] S. Dhompongsa, B. Panyanak, On ∆-convergence theorems in CAT(0) spaces,
Computers and Mathematics with Applications 56 (2008) 2572-2579.

[6] Z. Opial, Weak convergence of the sequence of successive approximations for
nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591–597.

[7] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach
space, Proc. Amer. Math. Soc. 59 (1976) 65–71.

[8] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings
by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301–308.

[9] M.A. Khamsi, S.A. Shukri, Generalized CAT(0) spaces, Bull. Belg. Math.
Soc. Simon Stevin 24 (2017) 1–10.

[10] A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct.
Anal. Unianowsk Gos. Ped. Inst. 30 (1989) 26–37.

[11] S. Czerwik, Contraction mapping in b-metric spaces, Acta Mathematica et
Informatica Universitatis Ostraviensis 1 (1993) 5–11.

[12] C. Mongkolkeha, Y.J. Cho, P. Kumam, Fixed point theorems for sim ulation
functions in b-metric spaces via the wt-distance, Applied General Topology,
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