See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/381802774

Self-adaptive CQ-type algorithms for the split feasibility problem involving

two bounded linear operators in Hilbert spaces

Article in Carpathian Journal of Mathematics - January 2024

DOI: 10.37193/CIM.2024.01.07

CITATIONS
2

4 authors, including:
Y Pachara Jailoka
z University of Phayao
15 PUBLICATIONS 97 CITATIONS

SEE PROFILE

Wongvisarut Khuangsatung

Rajamangala University of Technology

19 PUBLICATIONS 52 CITATIONS

SEE PROFILE

All content following this page was uploaded by Pachara Jailoka on 29 June 2024.

The user has requested enhancement of the downloaded file.

READS
18

Cholatis Suanoom
b ~  Kamphaeng Phet Rajabhat University

3 PUBLICATIONS 2 CITATIONS

SEE PROFILE

ResearchGate


https://www.researchgate.net/publication/381802774_Self-adaptive_CQ-type_algorithms_for_the_split_feasibility_problem_involving_two_bounded_linear_operators_in_Hilbert_spaces?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/381802774_Self-adaptive_CQ-type_algorithms_for_the_split_feasibility_problem_involving_two_bounded_linear_operators_in_Hilbert_spaces?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pachara-Jailoka?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pachara-Jailoka?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Phayao?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pachara-Jailoka?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cholatis-Suanoom-3?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cholatis-Suanoom-3?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kamphaeng_Phet_Rajabhat_University?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cholatis-Suanoom-3?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wongvisarut-Khuangsatung?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wongvisarut-Khuangsatung?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rajamangala-University-of-Technology?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wongvisarut-Khuangsatung?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pachara-Jailoka?enrichId=rgreq-33fc806476b83197558d0e937173e951-XXX&enrichSource=Y292ZXJQYWdlOzM4MTgwMjc3NDtBUzoxMTQzMTI4MTI1NzI5MDQyMkAxNzE5NjI4NTg0OTEw&el=1_x_10&_esc=publicationCoverPdf

CARPATHIAN ] MATH. Online version at https://www.carpathian.cunbm.utcluj.ro/
Volume 40 (2024), No. 1, Print Edition: ISSN 1584 - 2851; Online Edition: ISSN 1843 - 4401
Pages 77 - 98 DOI https:/ /doi.org/10.37193 /CJM.2024.01.07

Self-adaptive CQ-type algorithms for the split feasibility

problem involving two bounded linear operators in Hilbert
spaces

PACHARA JAILOKA!, CHOLATIS SUANOOM?2, WONGVISARUT KHUANGSATUNG? and
SUTHEP SUANTAT?

ABSTRACT. In this article, we consider and investigate a split convex feasibility problem involving two
bounded linear operators in Hilbert spaces. We introduce a self-adaptive CQ-type algorithm by selecting the
stepsize which is independent of the operator norms and establish a strong convergence result of the proposed
algorithm under some mild control conditions. Moreover, we propose a self-adaptive relaxed CQ-type algo-
rithm for solving the problem constrained by sub-level sets of convex functions. A numerical example and
an application in compressed sensing are also given to illustrate the convergence behaviour of our proposed
algorithms. Our results in this paper improve and generalize some existing results in the literature.

1. INTRODUCTION

Let C' and @ be two nonempty closed convex subsets of Hilbert spaces H; and H,
respectively. The split feasibility problem (shortly, SFP) is to find a point

(1.1) x € C suchthat Ax € Q,

where A : H; — H» is a bounded linear operator. The SFP is the first instance of the split
inverse problem (referred to [13, Sect. 2]), which was first introduced by Censor and Elfv-
ing [11] in Euclidean spaces. The SFP model can be applied to solving many mathematical
problems such as the constrained least-squares problem, the linear split feasibility prob-
lem, and the linear programming problem and it can be used in real-world applications,
for example, in signal processing, in image recovery, in intensity-modulated therapy, in
pattern recognition and in data prediction (see [3, 5, 10, 12, 20, 22]). Consequently, the
SFP has been widely studied and various methods for solving such a problem have been
invented and developed by many authors, see [2,9, 17, 24, 25, 35, 36, 37, 38, 41, 43, 44] and
the references therein. One of the powerful methods for approximating solutions of (1.1)
is known as the CQ algorithm introduced by Byrne [2] as follows:

(1 2) T € H1,
. Tk+1 = PC (JCk - )\A*(I - PQ)AIk), k Z 1,

where A € (0,2/||A]|?), Pc and Py are the metric projections onto C' and @), respectively,
and A* stands for the adjoint operator of A. After that, various kinds of the split inverse
problem, which are generalizations of the SFI” were introduced and studied, see [4, 12, 13,
14, 28, 32] for instance.
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In this paper, we focus on a generalization of the SFP (1.1) in which two bounded linear
operators A, B : H; — H» are involved — Finding a point

(1.3) z € C suchthat Az € Q and Bz € Q,

where C C H; and Q,Q C H, are nonempty closed convex subsets. We call (1.3) the
two-operator split feasibility problem (two-operator SFP), see [28, 32] for the general versions
of this problem. The two-operator SFP (1.3) can be reduced to the convexly constrained
linear problem ([15, 29]) involving two linear operators, that is, finding a point « € C such
that Ax = y, Bx = g in Ho.

In 2019, Kangtunyakarn [21] studied the two-operator SFP (1.3) in case that Q) = Q and
introduced a viscosity-based algorithm with a given contraction f : C' — C as follows:
(1.4)

xr1 € C,
A
Tl = 5kf(xk) + dpxr + Y Po |:.Tk -3 (A*(I — PQ)A:ck + B*(I — PQ)B:Z?k):|, k>1,

where A € (0,2/max {||A|2, | B|*}) and {Bx}, {0k}, and {7, } are real sequences in (0, 1).
A strong convergence theorem of (1.4) was proved under some suitable conditions on the
control sequences, see [21, Theorem 3.1].

It is noted that the parameters A in (1.2) and in (1.4) depend on the norms of bounded
linear operators, so these algorithms have a drawback in the sense that the implementa-
tion of them requires to calculate or estimate the operator norms, which is not an easy task
in general practice (see [25, Subsection 6.1.2] for instance). To overcome this, in [2, Propo-
sition 4.1], it was presented a helpful method for estimating operator (matrix) norms but
its conditions seem restrictive. Lopez et al. [25] proposed an alternative way that is to
select the stepsize A, which does not need any prior knowledge of the operator norm for
replacing the parameter X in (1.2) as follows:

_ el = Po) Az |

(1.5) k= :
2| A%(I — Pg)Awy”

where pj, € (0,4). We can see that the choice of the stepsize ) in (1.5) is independent of
the operator norm || A||. This stepsize was widely employed in optimization methods and
was also modified for use in fixed point methods, see [8, 18, 19, 27, 33, 35]. The CQ algo-
rithm with the self-adaptive stepsize defined by (1.5) [25, Algorithm 3.1] guarantees only
weak convergence for the SFP (1.1), see [25, Theorem 3.5]. However, strong convergence
gives more desirable theoretical result in the setting of Hilbert spaces. To get strong con-
vergence, Vinh et al. [35] employed a modification of the CQ algorithm ([37, Algorithm
4.1]) with the stepsize (1.5) for solving the SFP (1.1) as follows:

16 x1 € Hq,
( ’ ) Th+1 = PC {(1 — Bk)(xk — )\kA*(I — PQ)AIk)], k Z 1,

where the stepsize )y, is defined by (1.5) and {8} C (0,1). They proved that the sequence
generated by (1.6) converges strongly to the minimum-norm solution to (1.1) under some
suitable control conditions, see [35, Theorem 3.1].

Here, the above review leads us to the following natural questions.

1. Can we design a CQ-type algorithm whose stepsize does not depend on the oper-
ator norm || A|| or || B|| to solve the two-operator SFP (1.3)?

2. How do we adapt the algorithm designed from Question 1 to be a strongly con-
vergent method?
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Motivated and inspired by the above questions and the results of Kangtunyakarn [21],
Lopez et al. [25], and Vinh et al. [35], we aim to invent a self-adaptive CQ-type algorithm
whose stepsize does not depend on any operator norms for solving the two-operator SFP
in the setting of Hilbert spaces. Moreover, we will prove that the sequence generated by
the proposed algorithm converges strongly to the minimum-norm solution. The rest of the
paper is organized as follows. In Sect. 2, some basic facts and useful lemmas for proving
our main results are given. Our main result is in Sect. 3. In this section, we introduce a
self-adaptive CQ-type algorithm using the stepsize which is independent of the bounded
linear operator norms for finding a solution of (1.3). A strong convergence theorem of the
proposed algorithm is analyzed and established. In Sect. 4, we propose a self-adaptive
relaxed CQ-type algorithm for solving the two-operator SFP in case of sub-level sets of
convex functions and also prove its strong convergence result. Finally, in Sect. 5, we
provide numerical experiments of our proposed algorithms in the setting of a Euclidean
space and in the signal recovery problem with two different blurring operations, and also
compare the efficiency of our algorithms with that of some methods depending on the
operator norms.

2. PRELIMINARIES

Throughout this paper, we suppose that H, H; and H; are real Hilbert spaces with
inner products (-, -) and the induced norms || - || (in particular, in Euclidean spaces, || - |1
denotes the [1-norm and || - ||2 denotes the Euclidean norm). The notation I stands for
the identity operator on a Hilbert space. Let {z}} be a sequence in H. Weak and strong
convergence of {z} to € H are denoted by x;, — z and z;, — x, respectively. The set of
all weak-cluster points of {x} is denoted by w., (z).

Let f : H — Rbea function and « € H. We say that f is weakly lower semi-continuous
at z if for every sequence {z; } C H, z;, — z implies f(z) < hknl> ior‘}f f(zr). A subdifferential

Of of f at z is defined by
Of(x)={ue H: f(x)+ {(u,z—z) < f(z), Vz€ H}.

The function f is said to be subdifferentiable at = if 9f(z) # (. One can see that if f
is subdifferentiable at z, then f is weakly lower semi-continuous at . We denote the
gradient of f by V f if f is differentiable.

Let K be a nonempty closed convex subset of H. Recall that the metric projection Pk
from H onto K assigns to each x € H the unique point Pxx in K satisfying ||z — Pxz| =
zlél}f( |z — z||. Some properties of the metric projection are listed below.

Lemma 2.1. The metric projection Py has the following properties:
(1) (x — Pgx,z — Pxx) <0, Vee HVzeK;
() (x — Pxx,x —2) > ||z — Pgz|?, Vxe HVzeK;
(8) Pk is firmly nonexpansive, i.e.,

1P — Pryl* < llo = yl|* = ll(z = Pxa) = (y = Pry)lI*,  Va,y € H,
in particular,
Pz — 2| < ||z — 2||* = ||z — Pxx|*, Vaxe HVzeK.

Let @ be a nonempty closed convex subset of Hy and let A : H; — H; be a bounded
linear operator with the adjoint operator A*. Define a function f : H; — R by

F() = (T~ Po)Adl®
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We know that f is weakly lower semi-continuous on H; and differentiable with the gra-
dient Vf : Hy — H; given by
Vf(x)=A"(I — Pg)Ax.
Moreover, V f is Lipschitz continuous with the Lipschitz constant || A||?, i.e.,

IV£(@) = VI < [AIPlle —yl, Vo.y e H.

For more details, the reader is referred to optimization books, see [1, 31] for instance.
We end this section with the following useful lemmas for proving our strong conver-
gence results.

Lemma 2.2 ([39]). Let {t} be a sequence of nonnegative real numbers satisfying

ter1 < (1= Br)te + Bedk,  Vk €N,
where {f} is a sequence in (0, 1) and {0y} is a sequence of real numbers such that Z Bk = o0
k=1

and limsup 6 < 0. Then, lim t; = 0.
k— o0 k—o00

Lemma 2.3 ([26]). Lef {si} be a sequence of real numbers such that there exists a subsequence
{k;} of {k} which satisfies sj., < sg;41 forall j € N. Let {7(k)} be a sequence of positive integers
defined by

7(k) :=max{n < k: s, < Spy1}

for all k > kg (for some kg large enough). Then {7(k)} is a nondecreasing sequence such that
7(k) = oo as k — oo, and it holds that

Srk) < Sr(k)+1 and s, < Sr(k)+1s Yk > k.

3. SELF-ADAPTIVE CQ-TYPE ALGORITHM AND ITS CONVERGENCE RESULT

This main section provides positive answers to the questions raised in the introduction
section, namely that we introduce a self-adaptive CQ-type algorithm (Algorithm 1) whose
stepsize does not depend on the bounded linear operator norms to solve the two-operator
SFP (1.3). Subsequently, we analyze and establish strong convergence of the proposed
algorithm. The following assumptions are set throughout the section:

e H; and H, are real Hilbert spaces,
e C C Hyand Q, Q C Hj are nonempty closed convex subsets,
e A, B : H; — Hy are two bounded linear operators,

oF:{xGC’:AxEQ,BxEQ}#@.

We begin with the following result that will be helpful in designing our algorithm.

Lemma 3.4. Let z* € C. Then, z* € I if and only if HA*(I — Pg)Az* + B*(I — Py)Ba”
0.

Proof. Letz* € C.If2* € T, then Az* € Q, Bx* € Q and so (I — Pg)Az* = (I—Pg)Bz* =

0. It is obvious that HA*(I — Pq)Az* + B*(I — P5)Bz™| = 0. Conversely, we assume that
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HA*(I — Pq)Az* + B*(I — Pg)Bz*|| = 0. Pick p € I'. By Lemma 2.1(2), we have

0= HA*(I — Po)Az* + B*(I — Py)Bx"

2" —p]

> <A*(I — Po)Az* + B*(I — Py)Ba*,a* —p>

= (A*(I - Po)Az*,z* — p) + <B*(I — P3)Ba*,z" —p>
— (I - P)Aa", Aa* — Ap) + ((I - Pg)Ba", Ba* — Bp)
I(I = Po)Az*||* + (I — Pg)Bz*|?,

v

which implies that (I — Pg)Az* = (I — Pg)Ba* = 0. Hence, Az* €  and Ba* € Q, that
is, z* € T O

Here, our iterative algorithm for solving the two-operator SFP (1.3) is designed as fol-
lows.

Algorithm 1: Self-adaptive CQ-type algorithm for the two-operator SFP

Initialization: Take two real sequences {5} C (0,1) and {ux} C (0,4).

Choose g € H; arbitrarily. Set x; = Pcxp and k = 1.

Iterative Step: Given zy, if HA*(I — Pg)Axy, + B*(I — PQ)B:ckH =0, then
Zip+1 = xy, (in this case, z;, solves (1.3) by Lemma 3.4) and the iterative process
stops. Otherwise, calculate

I(I = Po)Azy||* + || — Py) B

(3.7) Ak = [k 27
HA*(I — Pg)Axy + B*(I — PQ)Bka

(8)  zpy = Po {(1 — B) (zk - % (A*(I — Pg)Awy, + B*(I — PQ)Bgck)ﬂ .

Update k := k + 1 and return to Iterative Step.

For the sake of simplicity, we let g : H; — R be defined by
3.9 =L (1@ - P A=l + |1 - Py)Ba?
(39) 9(@) := 7 (I = Po) Al + (I = Pg)Bal?)
with the gradient given by
1 * *
V(z) = 5(A (I - Po)Az + B (I—PQ)BJJ), € Hi.

Note that (1.3) is equivalent to the problem of finding « € C such that g(z) = 0. In other
words, (3.7) and (3.8) can be rewritten in the form of the following modified gradient-
projection method:

fug (k)
Vgl

To verify the convergence of Algorithm 1, the following two lemmas are required.

Tht+1 — PC {(1 — Bk)(a:k — /\ng(xk))}, where /\k =
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Lemma 3.5. Let {x} be a sequence generated by Algorithm 1. If Vg(xy,) # 0, then the following
two inequalities hold for all z* € T,

* (12 * (|12 *12 gz(xk)
<3-;0> loken =217 < Belle" I + (U= Bedllow — 2" I = a4 = ) (1= By S
an
Jonsn = 2*12 < (1= Bi)llaw — 2* 12 + Be [ Bella” |2 4+ 201 — B)aw — o*, —a*)

(3.11) +2(1 = Be) M <Vg(xk)7x*>]

Proof. Let z* € I'. Using (3.8) and Lemma 2.1(3), we have

k41 — ¥ = HPC {(1 — Br) (zx — Ang(wk))} — Pex” i

< 10— 1) (a5 — M V() —a*|*

2

(3.12) = [|B(=a*) + (1 = ) (wr — MeVg(zx) — )|
(3.13) < Bellz*|? + (1 = Br) ok — M Vg(ax) — 2.
By Lemma 2.1(2), we get
(Vg(zp), 2 — ") = % (4°(I ~ Pg)Awy + B*(I ~ Pg)Bay, vy — 2*)
_ % (A" (1 = Po) A, w1, — &%) + (B*(I = Pg) Buy, oi — o)
_ % (1 — Po) Ay, Awy — Aa®) + (I — P) By, Brg — Br*)|
(3.14) > 2 [T~ Po) Ayl + (1 ~ Pg)Brul?] = 2g(e).

Now using (3.7) and (3.14), we obtain

lze = M Vglar) — 2*|1* = llor — 2% + A2 [Va(zi)|* — 2Xk (Vg(@r), x5, — )
< g — 2|2+ M2 ([Vg(zn)|* — 4Akg(ar)

2 2 2
_ ka o I*HQ + Mg (Ik)2 - 4,“169 (xk)2
IVg(@i)l*  [IVg(an)ll

B \ G (an)
(3.15) = Nl =@ 1” = (4 = pue) V()2

Consequently, substituting (3.15) into (3.13) yields

*(zr)

lrsr =27 < Billa™|® + (1 = Be)llee — 2" 7 — (4 — ) (1 ‘ﬂ’“)nvggT)n?

and (3.10) is obtained. We next show that (3.11) is true. From (3.15), we also have

*(xr)

* * g
lzx — MeVa(ar) — 2% < Jlan — || — (4 - Mk)w

(3.16) < lap — 2|2
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By using (3.12) and (3.16), we obtain
ek — 7 < [|Be(—a%) + (1= Bi) (zx — MVg(ar) — )|
= Bl |1 + (1 = Bi)? ax — M Vg(ax) — 2*|*
+ 28k (1 = Br) (xr — M V(i) — ™, —z™)
< Bl P + (1= Bi)? ok — *|* + 284 (1 = By) (wx — 2%, —a”)
+28k(1 = Br) Ak (Vg(zk), 2%)
< (1= Bo)ller — 2|* + By [5k\\x*ll2 +2(1 = Be){wp — 2", —27)
+2(1 = B (Vg(ay),a") |.
This completes the proof. O

Lemma 3.6. The sequence {x,} generated by Algorithm 1 is bounded.

Proof. 1f Vg(z,,) = 0 for some m € N, then z, = z,,, for all ¥ > m and hence {z} is
bounded. Assume that Vg(xy) # 0 for all £ € N. Let z* € I'. Using (3.10), we get

2z
fowes =12 < Gulle” 2+ (1= Bl =17 = pu(4 = )1 = o)
< Bella* |2 + (1 = o) e — 2
< max {[Ja" 1%, [|lox — 2*[*} .
By mathematical induction, we deduce that
st —a*[? < max{[a* %, a1 — 2*[?}, VK €N,
it follows that {z } is bounded. O

Now, we are ready to prove a strong convergence theorem of Algorithm 1.

Theorem 3.1. The sequence {xy} generated by Algorithm 1 converges strongly to a solution x*
to (1.3) provided that the control sequences {5y} and {p} satisfy the following conditions:

(C1) (1) lim f =0 and (2) > B = o3
(C2) irklf (4 — pg) > 0. !

Proof. If Vg(z,,) = 0 for some m € N, then the result is obtained directly by Lemma 3.4.
So, we assume that Vg(zy) # 0 for all k € N. Let «* := Pr0. Using (3.10), we get

2
* (12 * (12 *1(12 g (ﬁk)
||.’Ek+1—.’b H éﬂk“‘r H +(1_ﬁk)”xk_x || _/1’16(4_/‘”6)(1_ﬁk)va(xk”P?
it follows that
2
g (xk) *(12 *(|2 *(12
(3.17 (4= ) (1= B) TR a2 (g — 2| — (o — %)%
) pire (4 = pare)( k)va(xk)Hg kel 17+ [k 17 = l[#r42 |

The rest of the proof into will be divided into two cases:

Case 1. Assume that there exists kg € Nsuch that {||z;—z*| } x>k, is either nonincreasing
or nondecreasing. In this case, {||zx — z*| } is convergent because it is bounded. It follows
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that ||z — 2*||? — ||xk41 — 2*||* = 0 as k — oo. Then, in view of (3.17) with (C1)(1) and
(C2), we obtain

2
) g9°(zk)
3.18 lim ——— =0,
( ) k—o0 ||Vg($k)||2
which implies that
. _ g(zk)
3.19 ! Aw [V i oGl ~"
(3.19) m A [[Vg(zy)|| = lim Vg(zr)ll

Let yi, = (1 — Bk) (2 — MeVg(z)). Consider
ek =yl = (1 = Be)MeVg(zr) + Brarl < Akl Vg(xr)ll + Brllzgll,
it follows from (3.19) and (C1)(1) that
(3.20) lim ||z — yx|| = 0.
k—o00
By the same computation as the proof of (3.10), we get
(3.21) lye = 2*II* < Bullz™|1* + (1 = Be)llaw — 2*[|*.
For z € Hy, we let
1 1
h(w) = (I = Po)e|*, g%(x) := 5| (I = Po)Ax|* and ¢ (2) := S |(I — Pg) Ba|*
Using Lemma 2.1(3) and (3.21), we have
h(yx) = llyx — Poul?
< llye — 2*[1* = | Peye — =*||?
< Brlla*(® + llax — 2*|* = lenpr — 2",
which implies that
(3.22) lim h(yx) = 0.
k—o0
Since Vg# and Vg¢P are Lipschitz continuous with coefficients ||A||? and || B||?, respec-

tively, one is able to show that Vg is Lipschitz continuous with a coefficient
L := max{||A||?, | B||?}. Thus, we have

IVg(ze)ll = IVg(zr) = Vg(@™)|| < Lfjzr —2*||, Vk €N,

By the boundedness of {z) — z*}, the above inequality yields that {Vg(zx)} is bounded.
This together with (3.18) implies that g(zx) — 0 as £ — co and hence

(3.23) lim g”(zy) = lim ¢®(xy) = 0.
k—o0 k—o0
We next show that w,, (zx) C T. Since {2} is bounded, w,, (zx) # 0. Let & € wy,(zx). Then,

there exists a subsequence {zy, } of {z;} such that z;, — &. Since g is weakly lower
semi-continuous on Hj, it follows from (3.23) that

0 < g*(#) < liminf g* (24,) = 0.
]‘)00 :

Hence, g/ (#) = 0, thatis, A% € Q. Similarly, by using the weakly lower semicontinuity of
g% and (3.23), we get ¢” (i) = 0, that is, B# € Q. Since zy, — #, it also follows from (3.20)
that y,, — 2. By using the weakly lower semicontinuity of 4 and (3.22), we then deduce
that & € C. Therefore, & € T and this means that w,,(z) C I'. Since z* = Pr0, it follows
from Lemma 2.1(1) that

(3.24) limsup (xp —z*, —2) = max (& —z",—2") <O0.
k—o00 -’ieww(mk)
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Now using (3.11), we have
s = a*l12 < (1= Bl =212+ B[ Belle” I? + 201 = B — 2™, =)
+2(1 = B (Vo(an),a™) |
< (1= Bu)llew — 2|12 + B Belle” |2 + 21 = Bi) (o — 27, =)

+2(1 = Be) e [IVg()| "]
(3.25) = (1 - By)|lwk — 2*||* + Brdr, Vk €N,
where
b = Bella |2 + 201 = By){wx — 2%, —) +2(1 = B M [ V(i) "I

Using (C1)(1), (3.19), and (3.24), we get lim sup 5 < 0. Recall from (C1)(2) that Z B = oo.

k— o0 1
Consequently, by applying Lemma 2.2 to (3.25), we immediately obtain that x;, — z* as
k — oo.

Case 2. Assume that {||z, — z*||} is not monotone. There exists a subsequence {k;} of
{k} such that ||z}, — 2*| < [lzx,;41 — 2*| for all j € N. Define a positive interger sequence
7(k) by

7(k) i=max{n < k: ||z, — 2" < ||xnt1 — ="}
for all k > ko (for some k¢ large enough). By Lemma 2.3, {r(k)} is nondecreasing such
that 7(k) — oo as k — oo and

(3.26) lery = (| = [lro4n =" < 0
for all k£ > ko. From (3.17) and (3.26), we have
9 (wr(r)) 2

*— ||y — 27|

I IW) < gl 12 + ey - 2
ot = b

pr(ry (4= ) (1= Brei)
< Brw |12
In view of the above inequity with (C1)(1) and (C2), we get
2
Iim o (erw)
7 | Vg (@rw) |
By the same way as the proof in Case 1, we obtain

lim sup <x7(k) — ", —m*> = max (T—2a",—2")<0
k—o0 iEwu,(afT(k))
and
(3.27) 21 =27 < (1= Briwy) llawy = @[ + Byt
where

ey = Br Iz 17 +2 (1 = Brwy) (@ry — 2%, —2*) +2 (1 = Bry) Ariy |V () || 1127
such that lim sup d,(;) < 0. By looking at (3.27) with the fact that |lzre) —2*|| < || @r )41 — 2

k—o0

’

we have Hx'r(k)ﬂ — a:*H2 < 6,(x)- This implies that lim sup Hx'r(k)+1 — x*H2 < 0. Conse-
k— o0
quently, by utilizing Lemma 2.3, we have

0< [lag — 2% < ||@rgy41 — || =0 as k — oo.
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Therefore, in both cases we conclude that {x,,} converges strongly to * = Pr0. The
proof is complete. U

Remark 3.1. It is worth mentioning that there are some advantages of our main result as
follows:

(1) If {4} is a sequence generated by Algorithm 1 such that Vg(zx) # 0 forall k € N,
then {z} converges to the minimum-norm solution z* to (1.3), where z* = Pr0.

(2) The choice of stepsize A\, defined by (3.7) depends on z; and hence Algorithm 1
does not need to know the value of ||A]| or || B||.

(3) A result in [35, Theorem 3.1] for solving the SFP is a consequence of Theorem 3.1,
namely thatif A = Band @ = Q in our problem, then Algorithm 1 is immediately
reduced to (1.6) [35, Algorithm 3.1].

Remark 3.2. We note that the concept of choosing the stepsizes A, in (1.5) and (3.7) can

be extended to the case of the finite familes of operators A; and sets Q; (j =1,2,...,n)in
such a way:
(3.28) IO,

[Vg(ze)|

where u;, € (0,4) and g : H;y — R is defined by g(z) := % Z (1 - PQJ)ijH2 with
j=1

1 n
the gradient given by Vg(z) = — Z Aj(I — Pq,)Aj . It would be interesting to modify
n
j=1
the gradient-projection method with the stepsize (3.28) to solve the constrained multiple-set
split feasibility problem (CMSSFP) [28] which is formulated as finding a point

T € m C; suchthat A;z € Q,
i=1
where C; € Hy (1 = 1,2,...,m)and Q; € Hy (j = 1,2,...,n) are nonempty closed
convex subsets and {A; : Hy — H»} is a finite family of bounded linear operators.

4. SELF-ADAPTIVE RELAXED CQ-TYPE ALGORITHM

Due to our main result in Sect. 3, we consider the two-operator SFP (1.3) for general
closed convex subsets C, (), and Q; however, finding the explicit forms of the metric
projections Pc, Pg, and Py in Algorithm 1 may not be easy when these closed convex
subsets are complicated. Fortunately, one of the ways for calculating the metric projection
onto a sub-level set of a convex function suggested by Fukushima [16] is to compute the
sequence of metric projections onto half-spaces containing such a sub-level set. By this
idea, Yang [41] considered the SFP (1.1) in the case of two sub-level sets

(4.29) C={x€H : fi(x) <0} and Q ={y € Hs: fa(y) <0},

where f; : H; — Rand f> : H> — R are two convex functions. Also, assume that f; and
f2 are subdifferentiable on H; and Hj, respectively, and both df; and Jf, are bounded
operators (i.e., bounded on bounded sets). Yang [41] then introduced the so-called relaxed
CQ algorithm for solving the SFP (1.1) constrained by (4.29) as follows:

(4.30) 1 € iy, )
Tht1 = Pck(.rk — )\ (I — PQk)Axk), k>1,
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where X € (0,2/||A]|?) and C) and Qy, are half-spaces given as

Cy={z € Hy: fi(zx) + {cx, x — zx) <0},
where ¢;, € 0f1(xy) and
Qr ={y € Hy : fo(Axy) + (qr,y — Azi) < 0},

where g, € 0f3(Axy). It follows from the definition of the subdifferential that C C Cj,
and Q C Qi for all £ > 1. Since Pc, and Py, have closed forms (see [6, 16]), then the
implementation of the relaxed CQ algorithm (4.30) is easier than that of the CQ algo-
rithm (1.2) (in situations that Pc and Py have no closed forms). In addition, L6pez et al.
[25, Algorithm 4.1] modified (4.30) by using the self-adaptive stepsize A (1.5). Vinh et
al. [35, Algorithm 4.1] also introduced a relaxation version of the self-adaptive CQ-type
algorithm (1.6) to solve this problem.

This section was motivated by the above-mentioned notions and results. We now focus
on the two-operator SFP (1.3) in which closed convex subsets C, @, and () are sub-level
sets of convex functions. In what follows, we set the following hypotheses:

e H; and H; are real Hilbert spaces,

e #CCHyand ) # Q,Q C H are given as:

C:{IGHlifl(I) SO},
Q={y € Ha: foly) <0},
Q:{yGHzifz(y)§0}7

where f; : H; — R and f5, fg : Hy — R are subdifferentiable and convex functions
such that their subdifferential operators are bounded,

e A, B : Hy — H; are two bounded linear operators,
oF:{xEC:AxEQ,BJ;EQ}#@.
Let x;, € H;. Denote

(4.31) Cy :={x € Hy : fi(zy) + (cp, x — xx) <0},
where c;, € f1(xy),

(4.32) Qr = {y € Hy : fo(Azy) + (qr,y — Axy) < 0},
where ¢, € df2(Axy), and

(4.33) Qp = {y € Hy : fo(Bag) + (G, y — Bay) < 0}7

where g, € 8f2(sz).

Lemma 4.7. If there exists x), € C such that HA*(I — Py, )Ax, + B*(I — PQk)Bka =0,
then x;, € T

Proof. Let x, € C be such that HA*(I — Py, )Ax, + B*(I — PQk)Bka = 0. Pickanyp €T

Since Q C Q) and Q C Qy, then Ap € Q;, and Bp € Q.. By the same computation as the
proof in Lemma 3.4, we get

0= HA*(I — Py, ) Ay + B (I — PQk)Bka 2% — D
> (I = Po,)Az|” + [|(I — Py, ) Bz |?,
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which follows that (I — Py, ) Az, = (I—PQk)B;z:k = 0and hence Az, € Q) and Bz, € Q.

By (4.32) and (4.33), we have f3(Azy) < 0and fQ(BIk) < 0. Thus, Az, € Q and Bxy, € Q,
ie., zp €l O

Using (4.31)—(4.33), a relaxation version of Algorithm 1 is presented as follows.

Algorithm 2: Self-adaptive relaxed CQ-type algorithm for the two-operator SFP

Initialization: Take two real sequences {£} C (0,1) and {u} C (0,4).
Choose an initial point zy € H; arbitrarily and set k& = 1.

Iterative Step: Given xy, if HA* (I — Py, )Azy + B*(I — PQk)Bka =0, then
Zr4+1 = xy, and the iterative process stops. Otherwise, calculate

I — Py, )Azi||* + ||(I — Pp, )Bay|?
s e = e I = Pa) Anil* 41— Pg,) Bl

29

HA*(I — Po, ) Az, + B*(I — PQR)Bxk‘

435) a1 = Po, [(1 — B (:ck - % (A*(I — Po, ) Az, + B*(I — PQk)Ba:k))} .

Update k& := k + 1 and go on to Iterative Step.

For the sake of simplicity, we define a function g5, : H; — R by

1
ge(@) = 7 (I = Po) Al + (I = Py,)Bal?)
with the gradient given by
1 * *
Voi(z) = §(A (I — P, )Az + B*(I — PQk)B:E), z € H.

So, (4.34) and (4.35) become

k= m and 741 = Pc, [(1 = Bi) (x — AkVQk(xk))}'

Below we prove a strong convergence result of Algorithm 2 which extends a result in
[35, Theorem 4.1].

Theorem 4.2. Let {x}} be a sequence generated by Algorithm 2 with the control sequences { Sy }
and {py, } satisfying:

(C2) iréf (4 — p) > 0.
If Vi (zy) # 0 forall xy, ¢ C, then {x,} converges strongly to a point x* € T.

Proof. If Vg, () = 0 for some z,, € C, then the result is done by Lemma 4.7. So, we
suppose that Vg (zr) # 0 for all k € N. Let 2* := Pr0. In view of the proof of Lemma 3.5
with replacing g and C' by gi and C}, respectively, we deduce that

2
4.36) [lwryr — a*[|* < Brlle™ ]| + (1 = o) e — 2*[1* — pw (4 — ) (1 = ﬁk)wggkk((xf?)z
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and

lrsr =2 1* < (1= Bi)llaw — 2|1 + B {ﬂkllw*ll2 +2(1 = By) (g — 2%, —27)
(437) +2(1 = i) (Vgulan). ) |-
By (4.36), we obtain that {x}} is bounded and

438 el )~ BT a7 o — o s -

Now we consider the rest of the proof into two cases:

Case 1. Suppose that { ||z —x*||} x>k, is either nonincreasing or nondecreasing (for some
ko). We then have {||z, —z*||} is a convergent sequence and so ||z —2*||> — || zx+1—2*||* —
0 as k — co. From (4.38), we get

2
gk(xk)
439 lim —Je\Tk)
(4.39) A1 g @)

which implies that

. . 9k (k)
4.40 lim M ||Vr(x = lim —— _ —
(+40) o, M Ve (el = Jlim 1o T

Set yr, = (1 — Bx) (a:k - )\ngk(xk.)). By the same computation as in the proof of Theorem
3.1, we deduce that

(4.41) lim ||z —yel =0
k—o00
and
(4.42) lim [|(I — Pe,)yxll = 0.
k—o00

Since Pc,yr € Cy, it follows from (4.31) and using (4.41), (4.42), and the boundedness
assumption on 0 f; that

fi(zy) < ek, zkx — Poyyk)

= (¢ks Tk — Yk + yx — Poryk)

(4.43) < lexll (ke = yell + 11 = Poy)yll) — 0 as k — oc.
Note that Vg (z*) = 0 for all £ € N. Since Vg, is Lipschitz continuous with a coefficient
L := max{||A|%, || B||*}, we have

IVgr(@i)ll = [[Vgr(zr) = Var ()| < Lllzy — 2™, VEeN.
So, {Vgi(zk)} is bounded. This together with (4.39) yields that gx(x;) — 0 as k — oo and

hence

(444) lim |[(T — Po, ) Awg]| = lim [[(T — P, )Bay|| = 0.

Since Py, (Azk) € Q, it follows from (4.32) and using (4.44) and the boundedness as-
sumption on J f, that

(Axk) <Qka (I - PQk)Axk> )

<
< |lgxll[({ = Pg,)Azk|| — 0 as k — oc.

(4.45)
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Similarly, since Py, (Bxk) € Qy, it follows from (4.33) and using (4.44) and the bounded-
ness assumption on 9 f that

f2(Bak) < (G, (I — Ps, )Bay),

||5k||||(I—PQk)B$k|| — 0 as k — oo.

IN N

(4.46)

Now let & € wy, (). Thus, there exists a subsequence {xy, } of {z}} such that z3; — 2. By
the weakly lower semicontinuity of f; and using (4.43), we get

fi(#) < liminf fi () <0,
Jj—o0

This means that Z € C. Since A and B are bounded linear operators, we also have Az, —
Az and Bz, — Bi. By the weakly lower semicontinuity of f> and f2 and using (4.45),
(4.46), we obtain
fo(AZ) < liminf fo(Azy,) <0 and fo(B#) < liminf fo(Bay,) <0,
j—o0 ’ 00 :

which imply that Az € Q and B2 € Q Hence, Z € T" and so we obtain that w,,(zx) C T
Now, using the characterization of the projection, Lemma 2.1(1) with Pr0 = z*, we have

(4.47) limsup (zp — 2", —2*) = max (& —za",—a") <0.
k—o0 TEWw (Tk)

From (4.37), we get
[@rg1 — 2*[* < (1 = Be)llze — =*[|* + Br [ﬁka*HQ +2(1 = Bi) (o — 2, —27)

+2(1 = Be) A Vg (@) 1
= (1= Be)ller — a*||* + Bidy, Vk €N,

where 83 == Bi||z*||? + 2(1 — Br){(zr — 2%, —2*) + 2(1 — Br) e | Vgr(zr)| |2*]|. It follows
from (4.40) and (4.47) that limsupd; < 0. Finally, utilizing Lemma 2.2 with the above

k—oo
inequality, we can conclude that x;, — 2* as k — oo.

Case 2. Assume that {||z — 2*||} is not monotone. Using Lemma 2.3 and following the
similar argument to the proof in Case 1, one can prove that {z;} also converges strongly
to «* = Pr0. So, we omit the proof for this case. O

5. NUMERICAL EXPERIMENTS

To illustrate the convergence performance of our proposed algorithms and to support
our main results, we first employ Algorithm 1 for solving (1.3) in the setting of a Euclidean
space (see Example 5.1). After that, we use Algorithm 2 to solve the problem of recovering
a sparse signal from a limited number of sampling with two different blurring operations
(see Example 5.2). In both examples, we also compare the efficiency of our algorithms
with that of some methods based on the operator norms. All the numerical experiments
are completed on Apple MacBook Pro with 2 GHz Quad-Core Intel Core i5 with 16 GB
memory. The program is implemented in MATLAB R2023a.

Example 5.1. Let H;, = Hy = R? with the Euclidean norm. Consider a ball C and a
half-space @ = (@ given by

C= {(a,b) eR?:\/(a—22+ 12 gz} and Q = {(a,b) € R? : 3a+2b < —3}
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and two operators A, B : R? — R? given by A(a,b) = (—a,0) and B(a,b) = (0,b) for all
(a,b) € R2. One can see that I' = {z € C : Az, Bz € Q} # (). We will find the minimum-
norm element z* in I" by using our self-adaptive CQ-type algorithm, Algorithm 1. To do
this, we arrange the following explicit forms of the metric projections:

2
2,0) + ————(a —2,b), if(a,b) ¢ C,
Pty = d B0 =2, i)
(a,b), otherwise,
and
3a+2b+3 .
Polab) = (a,b) — T(S,Q), if (a,b) ¢ Q,
(a,b), otherwise,

for all (a,b) € R2. Firstly, we test the convergence behavior of Algorithm 1 by taking

Br = 737 and p = 25 with the starting point 2o = (4,2) as shown in Figure 1. It is

observed that z;, — (1, —1.5) € T" where ||(1,—1.5)| = mell]g |-
p

3
X
2 “l 0
C X .
'l
-
Ax* Ll
2 El 0 1 1Bl BB 3 4 5
Y
Xy ”
-1 XS{
N
Bx* X
r
Q 2
-3

FIGURE 1. Illustration of the convergence behavior of Algorithm 1

Next, we analyze the convergence performance of Algorithm 1 by choosing different
accelerating sequences {y} and also compare with that of the following algorithms de-
pending on the operator norms.

Algorithm 3: Let {x} be a sequence generated by (3.8) where

2
A= AE <0, ) .
max {||A[]%,[| B[}

Algorithm 4: ([21]) Let {x;} be a sequence generated by (1.4) where f := 0.

Each algorithm is equipped with the parameters in Table 1.
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TABLE 1. Setting parameters for each algorithm

Parameters Algorithm 1 Algorithm 3~ Algorithm 4
b= v v v
Pk = %, 0<p<4 v - -
0k = = 2]@7]12 - - v
0<A<2 - v v

TABLE 2. Numerical experiments with the different choices of the step-

sizes
Choice of the stepsizes &k (No. of iter.) CPU time (s) T Ey,

p=05 2198 02279830 (0.9990240, —1.4967059) _ 9.996E-07

p=1 1100 01576130 (0.9990244, —1.4967074) ~ 9.987E-07

Algorithm 1 p=2 551 01091000 (0.9990253, —1.4967104) ~ 9.968E-07
p=35 198 0.0890400  (0.9991338, —1.4968926) ~ 8.726E-07

p=39 111 00785620 (0.9993079, —1.4966262)  9.585E-07

X=05 5919 05656190  (0.9990239, —1.4967055)  9.998E-07

Algorithm 3 A=1 2960 03619410  (0.9990240, —1.4967061)  9.995E-07
A=19 1558 0.2533760  (0.9990241, —1.4967063) _9.993E-07

X=05 11837 T1435740  (0.0990238, —1.4967052)  9.999E-07

Algorithm 4 ([21]) A=1 5919 06078450  (0.9990239, —1.4967055)  9.998E-07
A=1.9 3115 0.3736660  (0.9990238, —1.4967052)  9.998E-07

We choose the starting point o = z; = (2,2) and use the stopping criterion for the

iterative process as: Ej, := g(z) < 107%, where g is defined by (3.9). Now the comparision
of the numerical experiments of Algorithms 1, 3, and 4 are shown in Table 2.

Remark 5.3. By testing the performance of Algorithms 1, 3, and 4 and from Table 2, we
observe that

(1) All studied algorithms give the approximate solutions close to (1, —1.5) which is
the minimum-norm solution.

(2) Algorithm 1 converges the fastest and takes the least time.

(38) The choice of the stepsizes influencses the convergence behavior of all studied
algorithms. Namely that if {4} is taken close to 4 (for Algorithm 1) and X is taken
close to 2 (for Algorithms 3 and 4), then the number of iterations and the CPU time
have reduction. Meanwhile, choosing different starting points has no significant
impact on their convergence behavior.

Example 5.2. (Compressed Sensing [25, 30]). Here, we consider the problem of recovering
a sparse signal z € RY from the observation of two signals y,§ € RM (M < N) via the
linear equation systems:

(5.48) y=Ax+e and y= Bz +¢,

where A, B : RV — RM are two bounded linear observation operators (they are often
ill-condition) and ¢, ¢ are additive noises. The problem (5.48) can be solved by using the
LASSO technique ([34]) in the froms of the constrained least-squares problem:

1 1
(5.49) minimize §||Ax —y|% and §||Bx — g3

with respect to z € C := {x € RV : ||z||; < t}, where t > 0 is a given constant. If (5.49)
has a solution, we see that (5.49) is a particular case of the two-operator SFP (1.3) where
Q = {y} and Q = {7}. Since C is the closed /; ball in R" with the radius ¢, we will employ
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the relaxation version of our self-adaptive CQ-type algorithm, Algorithm 2 to solve (5.49).
Define fi(z) = ||z||1 —t and consider the half-space C}, denoted by (4.31). The closed form
of the metric projection from RY onto Cy, is as follows:

x, if fi(xg) + (ck,x — x) <0,

P, xr) = —
() . fi(zk) ‘ﬂ <C|l|c;ff $k>ck, otherwise,
Ck

where ¢, € 0f1(z1) is chosen as
1, ifzl’ >0,
o’ ={o0, ifal) =0,
-1, if x,(j) <0,
see [17, Section 5].
In our experiment, two sampling matrices A, B € are generated randomly from
normal distributions with N = 2048 and M = 1024. The sparse signal 2* € R is gen-
erated from a uniform distribution in [—2, 2] with m nonzero components. The measured

values y and § are generated by white Gaussian noise with the signal-to-noise ratio (SNR)
as 40 and 50 decibles, respectively. Set t = m. We test three cases as follows:

Case1: m =10, Case2: m =50, Case3: m = 100.

We compare the signal recovery performance of Algorithm 2 with that of the following
algorithm depending on || A| and || B||.

RMXN

Algorithm 5: Let {z;,} be a sequence generated by (4.35) where

2
A=A E (0, ) .
max{|| A%, [ BI|*}

Let 8, = %_H and = ,f—fl for Algorithm 2 and By = k%rl and \ = W for

Algorithm 5. The process is started with the initial signal 2; = 0. The restoration accuracy
is measured by the mean squared error (MSE), i.e.,

1
MSE(k) = —[|l=" — zp|* < 1074

where z* is the original signal and x, is an estimated signal of 2*. Now, the numerical
results of recovering the signal x* are reported as Figures 2-7.

Remark 5.4. By the simple experiments as shown in Figures 2-7, we note that

(1) The original signals z* can be recovered by Algorithms 2 and 5.

(2) If the number of spikes of 2* increases, then both methods also require an increase
in the number of iterations and the CPU time. However, the number of iterations
and the CPU time of using Algorithm 2 are less than those of using Algorithm 5.



94

Pachara Jailoka, Cholatis Suanoom, Wongvisarut Khuangsatung and Suthep Suantai

Original signal (N=2048, M=1024, 10 spikes)
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FIGURE 2. Signal recovery experiment in Case 1.
From top to bottom: original signal; observation data using A; observation data
using B; recovered signal by Algorithm 2; recovered signal by Algorithm 5
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FIGURE 4. Signal recovery experiment in Case 2.
From top to bottom: original signal; observation data using A; observation data
using B; recovered signal by Algorithm 2; recovered signal by Algorithm 5
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For the closed forms of some metric projections onto simple closed convex subsets in
Hilbert spaces, the reader is referred to [6, Chapter 4]. There are also some examples
for the split feasibility problem and related problems in the infinite-dimensional Hilbert
spaces, see [23, 33, 35].

CONCLUSION

This paper discusses and analyzes the convergence results on the two-operator split
feasibility problem (two-operator SFP) in Hilbert spaces, namely finding a point of a
closed convex subset of a Hilbert space such that each of its images under two given
bounded linear operators belongs to a closed convex subset of another Hilbert space. We
introduce a self-adaptive CQ-type algorithm where the stepsize does not depend on such
bounded linear operator norms. Under some mild conditions, we then prove that the se-
quence generated by the proposed algorithm converges strongly to the minimum-norm
solution of the two-operator SFP. A relaxation version of our proposed algorithm is also
introduced for solving the problem constrained by sub-level sets of convex functions. Our
main results improve the result of Kangtunyakarn [21, Theorems 3.1] in terms of selecting
the stepsize in the algorithm and generalize the results of Vinh et al. [35, Theorems 3.1
and 4.1] for the split feasibility problem (also improve the results of Xu [40], Wang and
Xu [37], Yao et al. [43] and Chuang [7]). In addition, it is observed from our numerical
experiments that our self-adaptive CQ-type algorithms (without any operator norms) are
more efficient than the CQ-type algorithms based on the operator norms.
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